Prediction of Thematic Rank for Structured Semantic Role Labeling

نویسندگان

  • Weiwei Sun
  • Zhifang Sui
  • Meng Wang
چکیده

In Semantic Role Labeling (SRL), it is reasonable to globally assign semantic roles due to strong dependencies among arguments. Some relations between arguments significantly characterize the structural information of argument structure. In this paper, we concentrate on thematic hierarchy that is a rank relation restricting syntactic realization of arguments. A loglinear model is proposed to accurately identify thematic rank between two arguments. To import structural information, we employ re-ranking technique to incorporate thematic rank relations into local semantic role classification results. Experimental results show that automatic prediction of thematic hierarchy can help semantic role classification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Tree Kernel-Based Shallow Semantic Parser for Thematic Role Extraction

We present a simple, two-steps supervised strategy for the identification and classification of thematic roles in natural language texts. We employ no external source of information but automatic parse trees of the input sentences. We use a few attribute-value features and tree kernel functions applied to specialized structured features. Different configurations of our thematic role labeling sy...

متن کامل

RTV: Tree Kernels for Thematic Role Classification

We present a simple, two-steps supervised strategy for the identification and classification of thematic roles in natural language texts. We employ no external source of information but automatic parse trees of the input sentences. We use a few attribute-value features and tree kernel functions applied to specialized structured features. The resulting system has an F1 of 75.44 on the SemEval200...

متن کامل

A Study of Imitation Learning Methods for Semantic Role Labeling

Global features have proven effective in a wide range of structured prediction problems but come with high inference costs. Imitation learning is a common method for training models when exact inference isn’t feasible. We study imitation learning for Semantic Role Labeling (SRL) and analyze the effectiveness of the Violation Fixing Perceptron (VFP) (Huang et al., 2012) and Locally Optimal Learn...

متن کامل

برچسب‌زنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه

Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...

متن کامل

Semantic Role Labeling with Neural Network Factors

We present a new method for semantic role labeling in which arguments and semantic roles are jointly embedded in a shared vector space for a given predicate. These embeddings belong to a neural network, whose output represents the potential functions of a graphical model designed for the SRL task. We consider both local and structured learning methods and obtain strong results on standard PropB...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009